03、站在十字路口的商汤
AI的实际应用价值不用再做赘述,且背后一直有政策支持。
双重加码下,商汤该何去何从?
首先,商汤要考虑眼下盈利的刚需。
技术盈利的问题,其实本身与技术无关,商汤固然有技术的实力与底气,但技术盈利是个商业和经济问题。
经济问题在于边际投资效果递减,过于重视技术的商汤,随着技术投资成果的增加,用于新成果的投资需要的就更多,结果便陷入了烧钱漩涡。
站在塔上的商汤只看到了远处的风景,却没想过要如何到达目的地,对于AI技术的产业应用,目前的技术早已驶入了快车道,唯独产业在后方的泥潭挣扎。
当下AI企业中,普遍成本高、售价低,且还面临着同行的虎视眈眈,尤其是AI企业里基本没有独家盈利项目,所有AI场景对于AI企业来说大同小异,所以AI企业如何选择自己的路是个难题。
其实,AI企业更像如今的滴滴,滴滴无人驾驶的成果与市面现有产品相差不多,打车也赚不到覆盖成本的钱,涨价用户跑了,降本公司倒了,所以商汤核心问题依旧是在于降成本。
此外,商汤这类的独立 AI公司一直以来都面临着应用场景碎片化的挑战。在不同项目中,客户的需求不同,算法也将随之更新、产品的复用性较低。
而独立 AI公司在面临应用场景碎片化的挑战,衍生出三种类型。
第一种是深化AI技术的应用深度,通过软件算法和硬件终端模块化结合,开发出更符合市场地位的产品,如科大讯飞对于智能语音技术的运用。
第二种是将AI技术与其他产品平台结合。如部分中科创达将图像AI和操作系统平台技术结合。
第三种是选择扩大下游覆盖面,利用高效研发的技术优势,针对不同硬件设备和场景需求快速开发AI模型,而这正是商汤AI赋能百业的战略。
商汤选择了最难的一条路,其高效研发的技术优势,必然会大量放血,伤口反复,长期阵痛。而且,针对不同设备和场景定制化AI模型,其成本高昂,投入与产出比严重失衡,更是难上加难,所以在各个AI细分领域均有商汤的身影,但多数业务由于成本、市场等原因点到为止,演化的四大板块业务,其实也就是在百业之间游走。
商汤很大的一个问题是迷茫,AI落地的对象到底是To B还是To C,AI落地的众多场景如何选择,自己主攻的赛道又是哪个?
当前,商汤正处于To B赋能阶段,只有找准商业定位、学会开拓市场,才知道在十字路口中,路该往哪走。